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A simple model for f-d transitions of rare-earth ions in crystals
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Abstract

Theoretical simulation and interpretation of f-d transitions of rare earth ions in crystals are more difficult than for f-f

transitions, because f-d transitions involve many more energy levels and are further complicated by strong vibronic transitions, so

the experimental spectra contain many fewer resolvable peaks. In order to better understand the structure of the spectra, a simple

model is developed to take into account the main interactions in the f N�1d configuration. This model leads to quantum numbers

characterizing the states and the associated transition selection rules. Relative transition intensities can be quantitatively estimated.

The model is applied to Eu2þ and Sm3þ ions in crystals.

r 2003 Published by Elsevier Science (USA).

1. Introduction

It is well known that f-f spectra of rare-earth ions
are characterized by many sharp lines. The energy levels
are well resolved and the symmetry properties may be
determined from polarized spectra. The energy level
structure is characterized by weak splitting of the quasi-
free-ion energy levels, which change little from host to
host. Modeling of the experimental energy levels and
transition probabilities with a crystal–field model
Hamiltonian [1] and Judd–Ofelt theory [2,3] are well
known.

In comparison, the f-d transitions are less well
understood experimentally and theoretically, partly
because the f-d transitions for trivalent rare-earth
ions generally lie in the ultraviolet or vacuum ultraviolet
region, making them experimentally less accessible. The
divalent rare-earth ions have transitions of lower energy
but the divalent oxidization states are usually unstable.
Nevertheless, there have been some measurements on
f-d transitions for Eu2þ; Sm2þ and Yb2þ in halide
crystals, and more recently, for most trivalent ions in
LiYF4; CaF2 and YPO4 hosts. The f-d transitions are
characterized by broad bands with very little structure,
even though there are many energy levels involved in the
f-d transitions. The structure of the f-d transition
spectra are quite different for a particular ion in

different hosts but in many cases there are similarities
for different ions in the same host. Theoretical models
have been proposed to explain f-d transitions of
divalent ions in crystals. These models assumed that
there is no interaction between the f N�1 core and the d

electron. For example, Eu2þ in CaF2 contains two broad
bands in the UV region, with a ‘‘staircase’’ structure for
the band with lower energy. The two broad bands were
assigned to be transition [5] from the f 7 ground state to
the f 6d states with the d electron in eg and t2g orbitals.
The staircase was assigned to be the splitting of the
ground states of f 6 core by spin–orbit interaction [5].
Later calculations showed that the Coulomb interaction
of the f and d electrons cannot be assumed to be small
[7]. Full energy level and transition intensity calculations
that include all the bases and interactions for the f N and
f N�1d configurations are now possible. Extensive
calculations have been carried out for trivalent rare-
earth ions in crystals [9,10]. These calculations are
similar to those for f N but require many more physical
parameters as input: the energy level parameters for the
f N configuration and for the f N�1 core of the f N�1d

configuration, the crystal–field parameters for d elec-
tron, and the parameters describing the Coulomb
interaction between f electrons and the d electron.
There is no adjustable parameter for the relative
intensities of the dipole-allowed transitions, but a model
to describe the vibronic profile is essential and this has
been simplified with three adjustable parameters: the
offset and the bandwidth of the vibronic band and the
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intensity ratio of the zero-phonon line to the vibronic
band. These calculations gave satisfactory agreement
with the experiments.

The f-f spectra, containing plentiful fine structure,
have been understood both qualitatively and quantita-
tively with a simple crystal–field Hamiltonian and Judd–
Ofelt theory with adjustable parameters. However, the
f-d spectra, in which fewer peaks are resolved, have
required more complicated calculations and the inter-
pretation of the results of these calculations are quite
difficult. Here, we develop a simple model to understand
the f-d transitions qualitatively. The model uses two
quantum numbers to characterize the energy levels.
These quantum numbers may be used to derive selection
rules and relative transition intensities can be estimated
based on the approximate wavefunctions. The model is
applied to Eu2þ and Sm3þ ions in crystals to give a
qualitative explanation of the experimental results.

2. Model

2.1. Model Hamiltonian for the f N�1d configuration and

general energy level structure

The Hamiltonian for the f N�1d configuration can be
written as

H ¼HCoulðff Þ þ Hsoðf Þ þ Hcðf Þ þ HcðdÞ
þ HsoðdÞ þ HCoulðfdÞ; ð1Þ

where the subscript ‘‘Coul’’, ‘‘so’’ and ‘‘c’’ represent
Coulomb interaction, spin–orbit interaction and crys-
tal–field interaction, respectively, and ‘‘f ’’ and ‘‘d’’ are
the electrons involved in the interactions.

The strongest interactions are the Coulomb interac-
tion between f electrons and the crystal–field interaction
for the d electron. The former splits f N�1 into energy
levels characterized by quantum numbers for the spin,
Sf ; and the orbital angular momentum, Lf : These
energy levels are denoted as jZSf Lf S; where Z is a
multiplicity number to distinguish different levels with
the same Sf and Lf : The latter splits d into crystal field
energy levels j2diS: These splittings are in the order of
magnitude of 104 cm�1: We shall write these two
interactions as

H0 ¼ HCoulðff Þ þ HcðdÞ: ð2Þ

The eigenstates of H0 can then be written as
jZSf Lf ;

2diS:
These energy levels are further split by the isotropic

exchange part of HCoulðfdÞ into high-spin and low-spin
sets separated by a few thousand wave numbers. There
are also splittings in each set due to the other part of
HCoulðfdÞ and will be neglected in the following analysis.
The part of HCoulðfdÞ that contributes to the splitting
between high- and low-spin states can be written as an

exchange Hamiltonian

HexðfdÞ ¼ �JexSf � sd ; ð3Þ

where Jex is a function of jZSf Lf ;
2diS: Its value can be

estimated from the average exchange interaction
strength between f and d electrons, i.e.,

Jex ¼ 6

35
G1ðfdÞ þ

8

105
G3ðfdÞ þ

20

231
G5ðfdÞ; ð4Þ

where G1;3;5ðfdÞ are f –d Coulomb exchange radial
integrals. HexðfdÞ commutes with the total spin operator

S ¼ Sf þ sd : ð5Þ

The energy levels for Hex can be written as
jðZSf Lf ;

2diÞSS; where S is the quantum number of
the total spin S:

The next-largest interactions are the spin–orbit
interactions Hsoðf Þ and HsoðdÞ; which have an order
of magnitude of 1000 cm�1: In low-degeneracy cases it is
not necessary to consider HsoðdÞ as the orbital angular
momentum of the d electron is quenched in the sense
that HsoðdÞ only shifts the crystal–field states by a small
amount. In the few high-degeneracy cases, such as the
t2g type d orbital in a site with Oh symmetry, HsoðdÞ
splits the t2g states and needs to be considered. We shall
consider the low-degeneracy cases only and neglect
HsoðdÞ for simplicity. The splitting caused by Hcðf Þ has
an order of magnitude of 100 cm�1; the same order of
magnitude as optical phonon energies. This cannot
usually be well-resolved experimentally. We shall con-
sider Hsoðf Þ only and neglect the other weak interac-
tions. Hsoðf Þ commutes with the following ‘‘angular
momentum’’ operator:

J ¼ Sf þ sd þ Lf : ð6Þ

This operator is different from the total angular
momentum operator for f N�1d in that it does not
contains the orbital angular momentum for d; which can
usually be considered to be quenched.

The interaction Hsoðf Þ splits the jðZSf Lf ;
2diÞSS into

several energy levels characterized by the quantum
number J; which can be denoted as jðZSf Lf ;

2diÞSJS:
Apart from this splitting, there is also small mixing by
Hsoðf Þ of jðZSf Lf ;

2diÞSJS with bases of the same J but
different Sf ; Lf and S; which may be important for
spin-forbidden transitions. We shall neglect this mixing
when considering spin-allowed transitions.

With these simplifications, we can write the model
Hamiltonian as

Heff ¼ H0 � JexSf � Sd þ lS;Lf
S � Lf ; ð7Þ

where lS;Lf
can be written in terms of the spin–orbit

interaction parameter x4f : It can be related to lZSf Lf
[1]

by

lS;Lf
¼ 2 � 2S þ 1

2Sf þ 1

� �
lZSf Lf

: ð8Þ
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In the case that Sf takes the largest possible value for the
f N�1 configuration, lZSf Lf

is simply signð8 � NÞx4f =2Sf ;
and

lS;Lf
¼ signð8 � NÞ 2 � 2S þ 1

2Sf þ 1

� �
x4f

2Sf

: ð9Þ

The eigenvectors and the corresponding eigenvalues
can be written as jðZSf Lf ;

2diÞSJS and

EðZSf Lf ;
2di;SJÞ ¼ E0ðZSf Lf ;

2diÞ
� Jex½SðS þ 1Þ � Sf ðSf þ 1Þ � SdðSd þ 1Þ
=2

þ lS;Lf
½JðJ þ 1Þ � SðS þ 1Þ � Lf ðLf þ 1Þ
=2: ð10Þ

2.2. Selection rules and relative line strength

for f-d transitions

The f N to f N�1d transitions are electric dipole
allowed and so other mechanisms are negligible. The
electric dipole moment D is a spin-independent rank 1
tensor in both total orbital angular momentum and total
angular momentum spaces. It can be thought of as the
coupling of the creation operator of an f electron
(a rank ð1

2
; 3Þ double tensor) to the annihilation operator

of a d electron (a rank ð1
2
; 2Þ double tensor). Using the

angular momentum coupling scheme for f N�1d energy
levels used above, i.e., ððSf sdÞSLf ÞJ coupling, the m

component of D can be expanded as

Dm ¼ D
ððð1

2
�1
2
Þ0�3Þ3�2Þ1

m ¼ D3�2
mJ �md

/3mJ2md j1mS; ð11Þ

where m and mJ and md are labels to distinguish the
partners of total angular momentum (rank 1), the
quantum number for the angular momentum J (rank 3)
and that for the d-electron orbital angular momentum
(rank 2). /3mJ2md j1mS is a vector coupling coefficient.

The f N energy levels jZSLJS can also be put into
ððSf sdÞSLf ÞJ coupling form as ðZSL; 10ÞSJS; where the
d-electron spin and orbital angular momentum are zero
as there is no d electron in f N :

The transition between f N energy level jZSLJS and
f N�1d energy level ðZ0Sf Lf ;

2diÞS0J 0S must satisfy the
selection rules

S ¼ S0; ð12Þ

jJ � J 0jp3pJ þ J 0: ð13Þ
The relative line strengths for the electric dipole

transitions that obey these selection rules can be
calculated as

ImðjZSLJS2jðZ0Sf Lf ;
2diÞSJ 0SÞ

¼
X

mJ ;m
0
J
mdi

j/ZSLJmJ jDmjðZ0Sf Lf ;
2diÞSJ 0m0

Jmdi
Sj2

¼ ð2J þ 1Þð2J 0 þ 1Þ
35ð2S þ 1Þ j/S � L � 0jjD0�3�2jjS � Lf � 2Sj2

ð14Þ

�
L Lf 3

J 0 J S

( )2 X
m3;mdi

j/3m3; 2dimdi
j1mSj2; ð15Þ

where /S � L � 0jjD0�3�2jjS � Lf � 2S is a reduced matrix
element that can be calculated from ‘‘coefficient of
fractional parentage’’ for f N and d states. The line
strength for transitions involving isotropic light is

Iiso ¼ð2J þ 1Þð2J 0 þ 1Þjdij
175ð2S þ 1Þ

L Lf 3

J 0 J S

( )2

� j/S � L � 0jjD0�3�2jjS � Lf � 2Sj2: ð16Þ

The relative line strength for transitions from the same
initial energy level to final energy levels differ only in the
quantum number for J can be calculated without
calculating the reduced matrix element.

3. Application to f-d transitions for Eu2þ and Sm3þ

ions in crystals

We now give examples of a divalent and a trivalent
rare-earth ion in crystals. These ions in the middle of the
lanthanide series have thousands of energy levels and
the full calculations [9,10] are hard to interpret, while
those ions at the beginning and end of the lanthanide
series have fewer energy levels and are much simpler. We
shall choose Eu2þ ðf 7Þ and Sm3þ ðf 5Þ ions in crystals
as examples.

3.1. Eu2þ in alkaline-earth fluorides

The f-d absorption spectra of Eu2þ have been
studied by many authors [4–6]. The spectra contain two
broad bands around 27,000 and 43; 000 cm�1: The low-
energy band has a staircase structure of about seven
peaks, with intensity increasing from low energy to high
energy (see Figs. 2 and 3 of Ref. [6]). These peaks have
been assigned to the seven 7FJ ðJ ¼ 0;y; 6Þ multiplets
of the f 6 core [5]. However, it was pointed out by
Weakliem [7] that the fd Coulomb interaction cannot be
considered to be weaker than spin–orbit interactions.
Weakliem’s calculation (Fig. 1 of Ref. [7]) shows that
the 7F multiplet of f 7 couples with 2eg and splits into
a set of high-spin states and a set of low-spin states.
Each set of states are split further by the spin–
orbit interaction. According to our model, these states
can be grouped in seven sets of octet states
jð7F ; 2egÞ8F 0

JS ðJ 0 ¼ 1=2;y; 13=2Þ and six sets of sextet
states jð7F ; 2egÞ6F 0

JS ðJ 0 ¼ 1=2;y; 11=2Þ: The center
position of each group can be estimated from Eq. (10)
by using JexE1500 cm�1; estimated from the G1;3;5 value
and l7F ¼ 250 cm�1 [7]. The ground-state absorption
to these octet states obey both spin and ‘‘angular
momentum’’ J selection rules. The relative line strengths
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can be easily estimated from Eqs. (15) and (16) by
noticing that for this particular case every factor except
ð2J 0 þ 1Þ is constant. Therefore, the relative line strength
is ð2J 0 þ 1Þ for jð7F ; 2egÞ8F 0

JS ðJ 0 ¼ 1=2;y; 13=2Þ: A
schematic diagram for the energy levels and absorption
line strengths is given in Fig. 1. This diagram reproduces
the staircase structure of the low-energy band of the
absorption spectra (note that since we use pure SL

coupling for 4f N�1 states, there is a discrepancy of a
few hundred wavenumbers between the estimated
and measured peak positions). For the high-energy t2

band, as it is not a low-degeneracy case, the orbital
angular momentum of the d electron is not completely
quenched and needs to be taken into account, making
the analyses a little more complicated. However, the
broadening due to relaxation to the conduction band
hides the fine structure and makes these analyses
unnecessary. The relative line strengths for the spin-
forbidden transitions can also be estimated if the mixing
due to the spin–orbit interaction is taken into account.
They are much weaker than these spin-allowed transi-
tions.

3.2. Sm3þ in YPO4; CaF2 and LiYF4 crystals

The f-d absorption spectra for most trivalent rare-
earth ions in YPO4; CaF2 and LiYF4 crystals have been
studied by van Pieterson et al. [8–11]. We choose Sm3þ

as an example. The ground multiplet for Sm3þ ðf 5Þ is
6H5=2: The lowest sextet multiplets for f 4d are
jð5I ; 2diÞ6IJS ðJ ¼ 7=2;y; 17=2Þ for each d crystal–field
energy level 2di: The splitting can be estimated using
Eq. (10). The multiplets with J ¼ 7=2; 9=2 and 11=2 are
the only states to which the absorptions obey the DJp3
selection rule. The relative line strengths can be
calculated from Eqs. (15) and (16) by noticing that
every factor except ð2J 0 þ 1Þ and the 6j symbol are
constant. The intensity ratios are 144:125:18. The
schematic diagram of energy level positions and relative

intensities are given in Fig. 2. In all the experimental
spectra of the three crystals, the first two peaks for the
first d crystal–field energy level (peak A1 and A2 in
Figs. 17–19 of Ref. [9]) have almost the same intensities
and the third peak is almost an order of magnitude
weaker. This agrees with our calculations. There is an
additional very weak peak for the first d crystal–field
energy level in CaF2 and LiYF4 corresponding to the
transition to jð5I ; 2diÞ6I13=2S; which is forbidden by the
DJ selection rule. This is probably due to J-mixing
in either the ground multiplets or excited multiplets or
both. The separation of these peaks in the experimental
spectra are similar for all the three crystals and can be
estimated by setting x4f E1500 cm�1: The model also
predicts that such structure should repeat for each of the
5d crystal–field levels. However, the 5d crystal–field
levels with higher energy are usually broadened by
relaxation to the conduction band, or other relaxation
mechanisms, and the structure is not well resolved.
Nevertheless, in LiYF4 the second 5d crystal–field level
is well resolved [9]. It contains three peaks with
separations and relative intensities agreeing with our
prediction.

4. Conclusion

A simple model for f-d transitions that takes
account of the main interactions in the f N�1d config-
uration is developed. This model leads to quantum
numbers grouping the numerous f N�1d states. Selection
rules and relative transition intensities are obtained
based on these quantum numbers. This model is applied
to Eu2þ and Sm3þ ions in various crystals and explains
the experimental results.
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